Metabolism of lipids in human white adipocyte.
نویسندگان
چکیده
Adipose tissue is considered as the body's largest storage organ for energy in the form of triacylglycerols, which are mobilized through lipolysis process, to provide fuel to other organs and to deliver substrates to liver for gluconeogenesis (glycerol) and lipoprotein synthesis (free fatty acids). The release of glycerol and free fatty acids from human adipose tissue is mainly dependent on hormone-sensitive lipase which is intensively regulated by hormones and agents, such as insulin (inhibition of lipolysis) and catecholamines (stimulation of lipolysis). A special attention is paid to the recently discovered perilipins which could regulate the activity of the lipase hormono-sensible. Most of the plasma triacylglycerols are provided by dietary lipids, secreted from the intestine in the form of chylomicron or from the liver in the form of VLDL. Released into circulation as non-esterified fatty acids by lipoprotein lipase, those are taken up by adipose tissue via specific plasma fatty acid transporters (CD36, FATP, FABPpm) and used for triacylglycerol synthesis. A small part of triacylglycerols is synthesized into adipocytes from carbohydrates (lipogenesis) but its regulation is still debated in human. Physiological factors such as dieting/fasting regulate all these metabolic pathways, which are also modified in pathological conditions e.g. obesity.
منابع مشابه
Roles of FGFs as Adipokines in Adipose Tissue Development, Remodeling, and Metabolism
White and brown adipose tissues (BATs), which store and burn lipids, respectively, play critical roles in energy homeostasis. Fibroblast growth factors (FGFs) are signaling proteins with diverse functions in development, metabolism, and neural function. Among 22 FGFs, FGF1, FGF10, and FGF21 play roles as adipokines, adipocyte-secreted proteins, in the development and function of white and BATs....
متن کاملNormal human adipose tissue functions and differentiation in patients with biallelic LPIN1 inactivating mutations
Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. ...
متن کاملAdipocyte Metrnl Antagonizes Insulin Resistance Through PPARg Signaling
Adipokines play important roles in metabolic homeostasis and disease. We have recently identified a novel adipokine Metrnl, also known as Subfatin, for its high expression in subcutaneous fat. Here, we demonstrate a prodifferentiation action of Metrnl in white adipocytes. Adipocyte-specific knockout of Metrnl exacerbates insulin resistance induced by high-fat diet (HFD), whereas adipocyte-speci...
متن کاملCombinations of bio-active dietary constituents affect human white adipocyte function in-vitro
BACKGROUND Specific bio-active dietary compounds modulate numerous metabolic processes in adipose tissue (AT), including pre-adipocyte proliferation and differentiation. AT dysfunction, rather than an increased fat mass per se, is strongly associated with the development of insulin resistance and is characterized by impaired adipogenesis, hypertrophic adipocytes, inflammation, and impairments i...
متن کاملActivated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors
OBJECTIVE Obesity-associated WAT inflammation is characterized by the accumulation and local activation of macrophages (MΦs), and recent data from mouse studies suggest that macrophages are modifiers of adipocyte energy metabolism and mitochondrial function. As mitochondrial dysfunction has been associated with obesity and the metabolic syndrome in humans, herein we aimed to delineate how human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes & metabolism
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2004